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Fig. 1. An example of a thumbnail bar, shaped as a belt that partially encircles the title of this paper. It features irregular shaped
thumbnails with gradually decreasing sizes, starting from the currently selected image (in the middle). Shown thumbnails represent
a dynamic subset of a large dataset composed of a few thousands of images; the selected subset is adaptive, denser around the
selected image and respectful of existing image hierarchies. When a new image is selected, the thumbnails dynamically rearrange
around the new selection in a configuration preserving all the above characteristics and without breaking temporal continuity.

Abstract—Conventional browsing of image collections use mechanisms such as thumbnails arranged on a regular grid or on a line,
often mounted over a scrollable panel. However, this approach does not scale well with the size of the datasets (number of images).
In this paper, we propose a new thumbnail-based interface to browse large collections of images. Our approach is based on weighted
centroidal anisotropic Voronoi diagrams.
A dynamically changing subset of images is represented by thumbnails and shown on the screen. Thumbnails are shaped like general
polygons, to better cover screen space, while still reflecting the original aspect ratios or orientation of the represented images. During
the browsing process, thumbnails are dynamically rearranged, reshaped and rescaled. The objective is to devote more screen space
(more numerous and larger thumbnails) to the parts of the dataset closer to the current region of interest, and progressively lesser
away from it, while still making the dataset visible as a whole. During the entire process, temporal coherence is always maintained.
GPU implementation easily guarantees the frame rates needed for fully smooth interactivity.

Index Terms—Visualization System and Toolkit Design, Scalability Issues, User Interfaces, Zooming and Navigation Techniques.

1 INTRODUCTION

Images are a wide-spread medium of communication which has enor-
mously grown with the advent of inexpensive digital cameras. Re-
cently, very large datasets of pictures are made available (e.g. from
Web, or targeted photographic campaigns). Browsing the images is a
central step in all application scenarios. Common image browsers are
based on equally-sized thumbnails, arranged on a regular grid or on a
line and displayed over a scrollable panel. It is widely recognized that
this approach, as is, does not scale well with the number of images
[22, 2, 26, 21, 6, 32, 15, 28, 27, 10].

This paper introduces a novel image browsing mechanism in which
thumbnails of images are dynamically packed inside a “thumbnail
area”, covering but a fraction of the screen. The arrangement of the
thumbnails is based on weighted anisotropic Voronoi diagrams. This
allows to closely fill a freely shaped thumbnail area with a large num-
ber of significant images, as shown in the teaser.

1.1 Application scenarios

Results of photographic campaigns in Cultural Heritage: time-
stamp is a natural choice for the total ordering, but is not the only valid
one. Massive external image calibration like [28], also freely available
from Web-services [31, 20], can provide reliable external calibrations
(camera roto-translation for each shot). The latter can be used to define
a more meaningful ordering on the images than just time-stamp: e.g.
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based on a path connecting viewpoints [27], or on the photographed
region [7]. Image calibrations also define image up-directions.

Large collection of images from the Web: like those provided by
on-line picture management and sharing applications (e.g. Flickr).
Natural total orderings in this case are derived from information on
authors, tags, time-stamps, and so on (or combinations).

Results of Web-searches: the Web can be queried for its con-
tents focusing on images (e.g. Google-image). Resulting image-
datasets can be ordered by time-stamp, relevance, or by content-based
or context-based analysis.

Personal image collections: combining time-stamp, original folder
structure, tagging, and the like [2, 9] provides a natural ordering.

In each of the above cases, an importance for each image can be
assessed by analyzing the images content or by evaluating their qual-
ity; for example, images can be clustered using any content-based or
tag-based technique, and selecting important image representatives as
centroids of those clusters.

Aspect ratio is often not uniform within the dataset. Even when pic-
tures are taken from similar cameras, aspect ratio can vary within the
dataset, due to “portrait/landscape” orientation differences (it can even
change drastically, e.g. in presence of a few “panoramic” images).

1.2 Input datasets

The proposed approach is not limited to a specific application scenario
as long as the image-dataset follows few characteristics:

Total ordering: one (or more) total ordering is assumed to be de-
fined among images in the dataset. In other words, it is always defined
which of any two images comes “before” the other. A total ordering
also implicitly defines relative distance between images (two images
are distant as much as the number of images that appear in the ordering
between them). We say that a total ordering is meaningful in the sense
that such distance is usually and roughly related to semantic similarity.

Varying representativeness: some images can be tagged as more
representative than other images, i.e. some images can be used as
exemplars of all the images in a small neighborhood. This means that



it is also possible to exploit any kind of previously existing hierarchical
or clustering organization of the images.

Conversely, we do not make assumptions on the characteristics of
the image-datasets, such as:

Size: large datasets (e.g. thousands of images) must be dealt with.
Aspect ratios: images aspect ratio can be either constant over the

dataset, or different for each image. Optionally, the system is capable
of exploiting further information, if available, such as per-image up
directions. These can be specified for each image and dictate the 2D
orientation along which the image has to be shown in the interface.
This orientation has not to be necessarily a multiple of 90 degrees.

In this paper, we propose a new, Voronoi driven, dynamic browsing
mechanism in which thumbnails represent images inside a “thumbnail
area”. Before sketching the idea in Sec. 3, we overview related work.

2 RELATED WORK

Conventional thumbnail-based image browsers (e.g. [9]) use a regular
grid layout showing all images, often mounted over scrollable panels.
However, this approach has several drawbacks: when there are too
many images, entire sections of the dataset are far beyond sight, un-
less thumbnails are made excessively small. Browsing for an image,
for example, can result wearing. This problem is aggravated when the
thumbnail bar covers only a fraction of the screen, for example, when
the main screen area displays the selected image at full resolution.
Secondarily, a regular grid layout enforces uniform thumbnail aspect
ratio: when the images aspect ratio is not uniform, this causes subop-
timal thumbnail cropping, distortions, or uneven gaps among thumb-
nails, which wastes screen space and can be perceived as unpleasant.

The challenge of more efficiently browsing a large image dataset
has generated a vast literature of different solutions and approaches.
The problem can be faced in a number of ways – complete analysis
of all the presented strategies, interfaces and techniques is beyond the
scope of this paper.

Most of the literature presents solutions that are in some sense
more specific or orthogonal to our Voronoi driven dynamic browsing
scheme, describing techniques that either are specific to some appli-
cation field, or providing algorithms for ordering pictures that can be
exploited by our approach.

For example, the retrieval of a specific image, while connected to
browsing, is a well separated task. Thus, our technique does not com-
pete with methods which approach this problem by adding features
like annotation and speech recognition [21, 6, 26, 32, 29]. Image pro-
cessing techniques can also be used to enhance queries and tag-sharing
among images [23]. Similar approaches could be plugged in our
thumbnail browser; however, it is worth remembering that some user
studies seem to indicate that generic users may prefer simpler GUI-
based navigation systems which require less user feedback [24, 8].

Similarly, the task of organizing and building structures over exist-
ing sets of images should be considered a separate problem. For ex-
ample, in PhotoSpread [15] tag information is used to organize images
into an extended version of a spreadsheet and to support subsequent
tag-queries and image comparisons; in PhotoScope [33] the authors
consider also space and time relationships, to the specific issue of pro-
viding an overview system for construction management.

Specifically, the technique we propose can make effective use of a
representativeness value for the images (see Sec. 3). Therefore, the
vast literature on techniques that allow to build clusters of images [14]
is relevant, as hierarchical structures can be employed to generate rep-
resentativeness values to be plugged in our approach. In [22], im-
ages are firstly grouped by time of shot and color analysis. In Pho-
toMesa [2] images are clustered using treemaps, while its zooming
interface allows the user to look for a particular image by search-
ing inside each image group. This strategy has also been tested on
PDAs [16], in which case the browser cannot scale well due to too
small screen resolution. Even though most of the above schemes use
also time and tags as ordering/clustering function, images generally
carry metadata which can be used to compute different organizations:
owner, approximate location, and other shot parameters [30].

Moreover, recent advances in Computer Vision techniques make
viable a new category of ordering and clustering approaches, based
on the possibility to reconstruct a rough 3D representation of the de-
picted scene from a set of photos. The original position and directions
of shooting of all photos can be recovered too and used to help or-
ganization and navigation of the photos. For instance, [27] observe
that shots (i.e. calibrated images) tend to cluster along certain paths,
compute them from image calibration and use these paths as a guide
during navigation. Using calibrated images, [7] suggest a novel way
to cluster images based on scene semantics, introducing the notion of
geo-relevance. For each calibrated image, they reproject its content
into a volume and score each voxel as a function of the number of
images in which it is visible. Then, images are organized into a tree
in which the root corresponds to the whole represented scene, while
in-depth paths focus on different parts of the scene.

Other approaches still exploit joint 2D-image / 3D-model (i.e.
image-based) visualization as a way to enhance user experience [28,
20, 10, 13]. At each frame, they show only the locally interesting set
of (2D-3D) data. In PhotoTourism [28] a 2D plan map also shows an
overall scheme of the scene, but this is practical when the scene is not
sparse. Otherwise, the image calibration cannot be performed. For
instance, browsing the dataset of pictures of a week holiday could be
uncomfortable even if the calibrations were provided.

A recent trend focuses on browsing using hand-held devices. In [3]
the browsing interface is based on multiple navigation bars (one for
images, one for “linearized” shots distance, and one for frequency).
Dynamic changing the ordering scheme can also guide navigation, as
proposed by [17]. Additionally, specific hardware features of recent
mobile devices can be used as a mean to perform browsing [5]. In mo-
bile devices context, however, bandwidth and hardware considerations
limit the amount of data that can be downloaded and, thus, the number
of contemporarily visible images and performed computations.

The above techniques are designed for some specific scenarios.
Conversely, in this paper we consider a more general setting, abstract-
ing from specific usages and presenting a general tool for efficient and
compact browsing of a large number of images. Similarly to us, other
approaches focus on general techniques for displaying thumbnails.

First of all, there are the already cited approaches that exploit hier-
archical quadtree like approaches (like for example [2]). With respect
to our technique, these are more constrained in terms of hierarchy-
representation and do not have an explicit way of managing both a lin-
ear ordering and an importance tagging of the images. Moreover, they
are designed for a browsing-centered interface, where the thumbnail
area is significantly large and, in all the presented examples, of rect-
angular shape. On the other hand, our approach is much more flexible
in terms of the thumbnail area shape. Another approach that has sim-
ilar limitations was presented in PhotoHelix [11], where a bi-manual
gesture-based system is introduced to time-order images, group them
by continuous sequences, and display them in a spiral. Users are ex-
pected to interact with the spiral arrangement to browse images at dif-
ferent scales, eventually grouping them in different manners. Beside
the previous points, this solution requires specialized hardware.

3 APPROACH OVERVIEW

The proposed dynamic browsing mechanism is based on a ‘thumbnail
area’ featuring image thumbnails, whose number, shape, position, and
size change dynamically and smoothly during the browsing process.

This thumbnail area is intended to be embedded as an element of a
GUI, such as a bar confined at the bottom or at the top of the screen, or
on a L-shaped area around a screen corner, etc. This leaves most the
screen available for the rest of the application. For example, in a photo
browser, the main area of the screen can be occupied by a full-sized
representation of the currently selected photo. In applications where a
3D model is shown as well as 2D images, the main area can be devoted
to the 3D rendering (in these applications, the currently selected photo
is usually linked to the 3D view position of its shot [28, 20, 4]).

This thumbnail area can be arbitrarily shaped and sized (and even
dynamically reshaped – allowing for “liquid” interfaces). Curved or
irregular shaped thumbnail-areas can be used, and still all of the space



devoted to them is profitably used, making this a flexible tool in the
design of a GUI.

In our browsing approach we assume that, as commonly happens,
one specific image has the role of the main image. We will refer to that
image as the current ‘focus’. For example, the focus can represent the
selected image currently displayed at full resolution in the main area.
Clicking on any thumbnail is a natural way to select that image as a
new focus; another natural way offered by the system is by dragging
thumbnails with a pointer device (see Sec. 5.2). Other application-
dependent ways to select a new focus include: selecting an image by
text search; reverting to a previously bookmarked image; navigating
the dataset along its total ordering by means of a key-based interface
(e.g. via “next image” and “previous image” buttons); and so on.

Since the total ordering of the image is assumed to be meaningful,
at any given moment it is reflected by the images spatial ordering in the
thumbnail area (see Sec. 4.4). For example, in a horizontal thumbnail
area the focus will probably be placed in the center, images preceding
the focus (in the total order) will be always displayed on its left, and
the ones following it on its right. In the same example, we do not
regard the vertical positioning as meaningful (in other words, vertical
positioning has no associated semantic and is freely optimized by the
system to achieve good arrangements).

Clearly, when large image datasets are visualized, only a subset of
all the images can be effectively presented as thumbnails to the end
user. We term ‘active’ images those being shown with a thumbnail
on the screen. Images immediately around the current focus (w.r.t.
the total ordering) should always be active, but away from it progres-
sively fewer and fewer images should be displayed. The concept is
that, in large datasets, exhaustively displaying of all images is only
important around the current center of interest: away from the focus a
progressively larger number of dataset images are not directly shown
as thumbnails, but rather implicitly represented by some other image.

Another important element of our browsing scheme is that images
closer to the focus deserve more space in the thumbnail area, so that
more of their internal detail is visible. Conversely, the farther an image
is from the focus, the smaller space its thumbnail gets. Also, coher-
ently with the spatial ordering, thumbnails representing images closer
to the focus are in a more central part of the thumbnail area, while
images far from it are relegated to peripheral areas.

A first challenge we need to face is how to achieve a good arrange-
ment of the thumbnails for active images, in a way that the above
desiderata on position, size, activation status and so on are fulfilled.

The second challenge is related to temporal coherence. When a
new focus is selected, applying the set of rules above determines a
general rearrangement which potentially affects every thumbnail on
screen. For each image, in fact, the distance from the focus changes
and, consequently, so do its activation status, prescribed position and
size. We want to switch to the new configuration with a fairly quick but
continuous animation, without breaking temporal coherence (which
would clearly harm usability).

Only when the new focus is extremely far from the previous one, so
that the subset of active images is almost completely different, or when
there are alternative total orderings in the dataset and user switches
from one to another, then temporal continuity becomes meaningless
and should explicitly be broken; in that case, reinitializing the entire
thumbnail area directly to a good configuration is a simple solution.

In our approach, the key element to achieve temporal coherence and
the rest of the objectives is to resort to a custom variation of Voronoi di-
agrams and Lloyd relaxation. We use Voronoi diagrams to partition the
thumbnail area into ‘regions’, and each thumbnail corresponds to a re-
gion. When a region moves and changes size during relaxation, the as-
sociated thumbnail follows it. The diagram as a whole is steered (e.g.
driving shapes, sizes and positions of the regions) by carefully chang-
ing a set of control parameters of the diagram (as region weights).

Paper structure: in the rest of this section we describe how, given
a current focus, a set of active images is selected (Sec. 3.1), and how
their ideal thumbnail sizes are prescribed (Sec. 3.2). The best answer
to these questions varies greatly depending on the applicative context.
Rather than proposing a specific solution, we show how this frame-

work can accommodate different choices of an interface designer.
Then, Sec. 4 details the characteristics of a Voronoi diagram (and

its relaxation) which we use to enforce requirements in a temporally
coherent way; after that, Sec. 5 shows how thumbnails are fitted inside
the resulting regions. Finally, Sec. 6 sketches a few details about the
implementation, which must be enough efficient to ensure full interac-
tivity. A conclusion and result Section closes the paper.

Fig. 2. Visual illustration of the criterion used to determine active im-
ages. Each image is shown as a vertical blue or green bar, displayed
from left to right according to the total ordering defined on the image
dataset. Each bar length is proportional to the representativeness as-
signed to that image. The red curve represents the selecting function
g, centered on the current focus and sliding with its position. Images
intersected with the curve (in green) are selected as active. The farther
away images are from the focus, the more sparse active images are.

Fig. 3. Illustration of how thumbnails are arranged in the thumbnail area.
Top: thumbnails are color-coded by how many missing images they cur-
rently “represent” (see Fig. 2), plus themselves. For illustration, each
thumbnail is numbered in its center with its rank in the total ordering, so
missing (non active) images are visible as gaps in the numeration.

3.1 Determining which images are active
As already stated, more images must be active near the current focus.
Another needed constraint is monotonicity, needed to avoid unneces-
sary switches of the activation status: an active image can only become
non active if the focus moves farther away, never if it gets closer.

To address this problem by assume that, for each image, we have a
static value denoting its ‘representativeness’: a high value means that
the image will be active even when the focus is far. In this case it will
stand for other images nearby that are not active for the time being.

Next, we use a function g : N→ N that dictates the minimal repre-
sentativeness that an image must posses in order to become active, as a
function of the distance of its index from the focus index. Thumbnails
are tested against g starting from the focus and expanding simultane-
ously in both directions: when a predefined upper limit on the number
of active images is met, remaining images are set as not active.

We used a g(i) which is simply linear with i, and specifically g(i) =
|2 ·K · log(N) · i/N|, N being the total number of images. Any other
function can be used, as long as it is monotonically increasing, and
g(0) = 0 and g(1) = 0 (so that an image is shown at least when it is
the focus or when it is next to the focus). This function customizes how
many images should be discarded away from the focus. For example,
setting g as a constant 0, a solid interval of images around the focus is
shown, skipping none, as in standard browsing interfaces. If g is set to
be 1 for i ≥ 2, it means that only even images are shown, except for
the two adjacent to the current focus.



Fig. 2 presents a visual representation of this algorithm and Fig. 3
the arrangement of thumbnails resulting from the subset of active im-
ages resulting from its application. Note that this mechanism allows
for images to be activated (or deactivated) between two images that
are already active, and not only at the extrema of the active image set.
Depending on the choice of g, this can be the most common situation.

It is worth nothing that representativeness values are not necessarily
linked in any way to the actual content of the images; the only impor-
tant thing is that they are appropriately scattered over the dataset. In
fact, if no further a priori information is available, it is appropriate to
assign well distributed and entirely arbitrary representativeness values
as follows: if an image is the i-th image of the dataset according to
a zero indexed total ordering, you can assign it a representativeness
value equal to the number of trailing zeros of the binary representa-
tion of i+1. This rule generates a simple power-of-two distribution of
representativeness values like the one depicted in Fig. 2.

On the other hand, this mechanism is quite general and it can ac-
commodate, within limits, the information that might be available
on the dataset about the meaningfulness of each image. In fact, we
would like to underline that every clustering technique and approach
for building automatic hierarchical organization of images can be used
to generate valid representativeness values by simply using the dis-
tance from the farthest descendant leaf.

3.2 Prescribing thumbnail sizes

In order to prescribe the ideal size of each thumbnail, we dynami-
cally assign a varying ‘importance’ measure to each active image, as
a scalar value expressed in an arbitrary measure that is intended to be
directly proportional to the on-screen area of the thumbnail. The ac-
tual prescribed area of a region for an active image with importance a
is given by the total thumbnail area multiplied by the ratio of a over
the summed importance of all active images.

Importance for active image i is determined by the number ki of cur-
rently active images separating, in the total image ordering, that image
from the focus. The relationship between ki and the importance value
is tabled, and can be an arbitrary function. This should be considered
a parameter in hand of the interface designer; this is analogous to the
choice of thumbnail size in a standard thumbnail based browser, and it
likewise depends on many factors, including the shape of the thumb-
nail area, the screen resolution and the typical image content, as well
as the application dependent scenario.

For example, importance can be set to be linearly decreasing with k
(so that many small images are visible far from the center, and fewer
bigger ones nearer to the focus); else, it can be larger for k = 0 and con-
stant for all other k (focus is larger and all other thumbnails are equally
sized); and so on. A possibility is to award a maximal importance to
all k≤M and a much smaller one to any other k, so that the first few M
images on either side of the focus are as large as it, for example to let
the user easily compare consecutive images (see for example bottom
two images of Fig. 7, where M = 1 and 2 respectively).

4 ADAPTED VORONOI DIAGRAMS

A Voronoi diagram [1] is defined for set of points, called sites, and
consists of a partition of a planar area into one region for each site, so
that every point inside a region is closest to the site of that region than
to any other site.

A Voronoi diagram can be evolved by iteratively moving each site
in the barycenter of its region and then recomputing the partition for
the new sites, a process named Lloyd relaxation. Lloyd relaxation is
known to converge to a configuration where the regions are roughly
equal sized and well distributed over the area. Away from the borders,
the final partition tends to resemble regular tilings, while closer to the
borders, it nicely adapts to the shape of the contours.

In the following subsections, we show how the definition of Voronoi
diagram and Lloyd relaxation are adapted to our purposes, with a com-
bination of small, targeted modifications, so that the result can be used
to efficaciously drive the movements of thumbnails. Specifically, we
will discuss the mechanism we use to: add appropriate weights so to

ensure that the area prescriptions are met (4.1); insert and remove re-
gions without breaking temporal coherence (4.2); add anisotropy so
to achieve regions with shapes and proportions better matching those
of the corresponding images (4.3); enforce coherent spatial ordering
of the sites at all times (4.4); improve convergence configurations and
reach them faster (4.5); robustly avoid oscillating behaviors that can
arise due to a few of these modifications (4.6); optionally, allow re-
gions to bulge a little out of the thumbnail area, if deemed appropriate
in the context of the designed GUI (4.7).

4.1 Weight balancing
In order to enforce regions with different areas (see Sec. 3.2), each
region is weighted differently. Weighted Voronoi diagrams are well
understood and can be defined in several alternative ways (refer to [1]).
We choose to use a power diagram, i.e. a Voronoi diagram where the
distance of a point p to a site si of weight wi is defined as |p− si|2−
wi. This choice has the advantage of producing convex regions and
straight borders between regions (barring anisotropy, see Sec. 4.3).

While a region area is guaranteed to monotonically increase when
its weight is increased, it would be difficult to explicitly predict which
weight must be used to result in the prescribed area for that region. In
order to bypass this problem, the actual region areas, resulting from
current weightings, are explicitly measured (during Lloyd relaxation):
weights are adjusted for the next iteration, according to detected area
excess or defect. The amount of change in weight adjustment is made
proportional to the area excess/defect, and bounded with a max-resize-
speed parameter Ms (we used Ms as five percent of the total thumbnail-
area size per second).

This way the system quickly converges to the weights that locally
produce the sizes prescribed by the varying importance function. This
mechanism also guarantees time-coherency: each region importance
never changes abruptly, while the region shrinks/enlarges to the new
size with continuity (and with controlled speed).

4.2 Inserting and removing regions
What is described above also applies to the case when a previously
non active image is made active and its importance is set to a positive
value, as a result of a focus change (according to what is described in
Sec. 3.1). A new region for that image is added to the diagram, but its
initial weight is set to zero, guaranteeing that the region will grow in
place progressively pushing away neighbor regions.

We also need to determine an initial position for the site. This
choice is not too critical, as the new region will quickly find an ap-
propriate spot, thanks to Lloyd relaxation, regardless of the initial po-
sition. However, a good strategy is to average the current site positions
of the regions corresponding to the active images immediately follow-
ing and preceding the new region in the total order. When these two
regions happen to be adjacent, as is usually the case, this means to
spawn the new region in or near the border separating them. Note that
this initial position is also coherent with the spatial ordering imposed
to the region (see Sec. 4.4). In the relatively rare cases where either
the following or the preceding active image is missing, we spawn the
new site at the appropriate extreme of the thumbnail-area.

Likewise, when a previously active image is made no longer active,
the corresponding region is not directly removed from the diagram.
Instead, the image importance is zeroed, so that the region weight
will start decreasing and neighboring regions can progressively expand
over it. Only when its detected area is negligible, it is removed.

4.3 Regions anisotropy
Images which are (for example) longer than tall should be represented
by a similarly shaped thumbnail. Also, in datasets where 3D external
calibration of images is available, it is convenient that the thumbnails
are rotated in 2D so that the world-space up direction matches the
screen-space up direction (i.e. so that the skies inside the images are
always on top, all buildings are always vertical, etc, regardless of how
the camera was oriented when the shot was taken).

Therefore, thumbnails should be accommodated inside a Voronoi
region with a roughly matching shape and orientation. This way



thumbnails allow for a better usage of screen space, diminishing
the magnitude of needed cropping/resizing of the thumbnails (see
Sec. 5.1). It also serves as a useful visual indication, for the end user,
of the original image orientation and aspect ratio.

To achieve this result we resort to a custom anisotropic version of
Voronoi diagrams (similarly to [18]).

Formally, we redefine the distance functions used in the Voronoi
diagram so that it is different for each region: a distance function di is
associated to each region i (and a point p belongs to the region of site
si if and only if, for any other site s j, di(p,si) < d j(p,s j)).

Each region i is beforehand associated to two orthogonal 2D vectors
~hi and ~vi, respectively describing horizontal and vertical directions of
the thumbnail in screen space. Vectors modules are such that |~hi|/|~vi|
is the x/y aspect ratio of the corresponding images, and |~hi| · |~vi|= 1.

Distance of a point p from site i is given by

di(p) =
∣∣∣∣( ~vi

~hi

)
(p− si)

∣∣∣∣2
−wi

The net effect is that regions tend to be elongated in the prescribed
direction by the prescribed amounts. Three scenarios can then take
place, depending on the dataset:
1. all images of the datasets share the same aspect ratio and orienta-
tion: then the same~hi and~vi are used for every i;
2. images of the dataset differ in aspect ratios, like the case of datasets
with identical sized images that are either “portrait” or “landscape”
oriented, or containing panoramas; in this case, vectors~hi and ~vi are
all respectively horizontal and vertical in screen space, but their norms
are swapped for regions with portrait thumbnails;
3. each thumbnail must be rotated differently by an arbitrary angle,
(and aspect ratios can be different): then~hi have arbitrary directions.

In all three cases, the relaxation tends, in practice, to result in good
arrangements of differently shaped regions (see Fig. 4), even if this is
not strictly guaranteed to always be the case. Note that in cases 2 and
3 the boundaries between the regions can become slightly curved. We
consider this a small and acceptable drawback.

Fig. 4. Thanks to anisotropic Voronoi diagram relaxation, thumbnail ar-
rangement can adapt to images aspect ratios and up orientations. Top:
a dataset consisting of images with uniform aspect ratio and orientation.
Middle: a dataset consisting of equally sized images with mixed por-
trait/landscape orientations. Bottom: a dataset where world space up
direction information is available and used to rotate each region. For il-
lustration purposes, image content inside thumbnails has been replaced
by random colors, striped (horizontally in image space) to emphasize
original image orientation, and the corresponding Voronoi regions are
shown in a lighter shade of the same color (refer to Sec. 5.1 for info
about how thumbnails are fitted inside regions).

4.4 Enforcing spatial ordering
Thumbnails must be spatially ordered inside the thumbnail area in a
way that reflects the total ordering of the image dataset.

For example, consider a thumbnail-area shaped as a horizontal bar.
Whenever image A precedes image B in the total ordering, the thumb-
nail for A is expected to always be on the left of thumbnail B (whereas
in the vertical direction we choose not to constrain positions).

The order enforcing mechanism is simple: all active thumbnails are
scanned following the total image ordering, and whenever the x coor-
dinate of two consecutive thumbnails is not coherently oriented, they
are swapped (leaving them at the same y). This operation is applied
once after each relaxation step. Mis-ordered thumbnail couples are
detected early so the jump is small, guaranteeing temporal coherence.

To generalize this mechanism for general shapes, thumbnail-areas
are parametrized, so that a main direction is defined. When a planar
region A is defined as shape for the thumbnail area, we also define
a corresponding parametrization function φ : (u,v)→ (x,y) ∈ A, and
its inverse φ−1, with φ−1(x,y) = (φ−1

u (x,y),φ−1
v (x,y)) (see Fig. 5).

Function φ−1 maps A into a parametric planar region where the hor-
izontal coordinate (that is, u) defines the intended visual ordering
direction. In other words, two consecutive thumbnails, inside re-
gions of sites (x0,y0) and (x1,y1) respectively, must be such that
φ−1

u (x1,y1) > φ−1
u (x0,y0). If that is not the case, the u parametric

coordinates are swapped, leaving the v coordinates unaffected:(
x0
y0

)
← φ

(
φ−1

u (x1,y1)
φ−1

v (x0,y0)

)
(and vice-versa for (x1,y1)).

In the horizontal bar example, φ is just the identity. If a vertical
bar is to be used with top to bottom ordering, then φ simply swaps
coordinates, and φ(u,v) = (v,u). It is easy to define custom shapes for
the thumbnail-areas together with the corresponding φ parametriza-
tion functions. In fact, most shapes allow for trivial parametrization
and many interesting shapes can be designed by simply deforming a
rectangle, so that the parametrization is available by construction.

Fig. 5. An L-shaped thumbnail-area (right), and its parameterization.

4.5 Improving convergence
Regions tend to assume the appropriate positions inside the thumbnail-
area as an indirect consequence of the almost regular arrangements
induced by the Lloyd relaxation. For example, in a symmetrical setup
on a horizontal bar, the currently selected region will almost invariably
move to the center, because in the final configuration it will have as
many regions on its right as on its left (due to enforced ordering), and
each region on the left will have a corresponding one on the right of
the same “importance” and therefore size.

While this works in the vast majority of cases, occasionally that
expectation is not met (due to discretization errors, see Sec. 6, or to
other factors). Other times the final configuration is met but only after
too many iterations.

To solve both problems, we introduce an extra force per region that
pushes each region site toward the intended final position on the x axis
(or, in non horizontal thumbnail bar, in the u parametric direction, see
Sec. 4.4). In our experience, it is enough to apply this force to the
central region only. The final position of the i− th active thumbnail is
computed beforehand as a function of i from the importance distribu-
tion function (see Sec. 4.1) and thumbnail area shape.



Regions that must disappear on either one end of the thumbnail-area
(see Sec. 4.2) are pushed toward the respective border.

4.6 System stabilization
Weight adaptations and ordering enforcements (Sections 4.1 and 4.4)
can occasionally cause the system to oscillate near convergence con-
figurations. Any of the configurations is close enough to convergence
to be acceptable, but the oscillations themselves can be distracting.
This can be solved in many practical ways. In our prototype we adopt
a simple but robust heuristic: oscillations are detected and quickly
stopped by progressively inhibiting further movements. For each re-
gion i we keep track of the time averaged (vectorial) displacement
movement ~mi of its site and the (scalar) traveled distance ti, as fol-
lows. Before each relaxation iteration, a region i with a site which was
moved from its previous position by a displacement ~d is updated with:

~mi = k~d +(1− k)~mi ti = k|~d|+(1− k)ti

where parameter k dictates how fast oscillations must be stopped (e.g.
k = 0.1). Small values of ratio |~mi|/ti ∈ [0,1] signal that the region is
undergoing oscillations. That ratio is used as a multiplicative factor
reducing (or stopping) site movements.

4.7 Soft thumbnail-area boundaries
As noted, the thumbnail-area can be of any custom shape, and for ex-
ample it can have curved as well as straight boundary lines. In a regu-
lar Voronoi diagram, these boundary lines are strictly maintained, and
points external to the thumbnail-area are never assigned to any region.
Alternatively, we can choose to weaken this condition to let regions
expand a little outside the area. Let p be a point external to the area, at
a distance dA from its border and at a distance di from the closest site
si. Point p is assigned to region i if di < fb(dA), and to no region oth-
erwise. The border function fb defines the shape of the border. We use
fb(d) = K0− d/K1, with two positive parameters K0 and K1. Setting
K0 to 0 means that regions are kept strictly inside the thumbnail area.
Otherwise, regions are allowed to “bulge out” of it a little in response
to a region being pressed against a boundary. Increasing K0 and K1
augments this effect: their product bounds the maximal linear distance
at which a region can extend outside the original thumbnail-area; K1
controls how much curved the part which bulges out is (see Fig. 6).

This mechanism offers an additional degree of customizability to
the proposed tool.

5 BROWSING WITH ADAPTED VORONOI DIAGRAMS

5.1 Filling regions with thumbnails
During the rendering of the thumbnail-area, actual thumbnails (smaller
versions of the original images) must be fitted inside regions defined
by the evolving Voronoi diagram.

By construction, each site is positioned roughly in the center of the
corresponding region, so a natural choice is to place the thumbnail
central point in that location. If up-directions are defined, thumbnails
are always rotated accordingly, around their center.

The zoom factor used for each thumbnail is linked to the current
area of the corresponding region. It is computed as the squared root
of the ratio between the current area of the corresponding region and
the (fixed) extension of the thumbnail (here we consider thumbnails
as having unit area). This way, when a region increases its size (e.g.
during its creation, or as a consequence of its increased importance),
the thumbnail inside it automatically grows larger, and vice-versa.

In regular thumbnail bars, thumbnails are typically obtained by a
combination of resizing and cropping of the original images: depend-
ing on the application scenario, different amounts of cropping can be
used; for example, if the compositions of the pictures as a whole are
important, images should be only resized, whereas if the the region of
interest is usually found on the center of the images, it is beneficial to
balance resizing and cropping, so that more details are left visible.

In our scenario, this consideration assumes a different meaning.
All thumbnail zoom factors are further multiplied by a total factor S,
which can be set between 0.5 and 1.50. Remember thumbnails are

constrained to only cover their irregular shaped region: the parts of
the thumbnails falling outside the region are just discarded. Therefore,
using larger values for S means to effectively crop the images with an
irregular (and time-varying) mask. This tends to cut out the boundaries
of the image, and especially its corners. Reducing the parameter S,
thumbnails progressively shrink inside a region, leaving gaps between
neighbors. In short, parameter S designates the desired balance be-
tween cropping (with irregular masks) ad downsizing of images. Fig. 8
shows a small gallery of results obtained varying the S parameter.

Using small values of S, thumbnails are well separated by gaps, the
entire content of each picture is visible, and the original image shape
is gave away the thumbnail shape. In this set-up, the Voronoi diagram
serves to determine dynamic thumbnail positions and zooming factors,
rather than to partition the plane.

Using large values of S more screen area is used to show image
content, as less space is wasted in gaps, and details of central part
of the images are more visible. Non rectangular thumbnails are also
appealing in sight of the recent advances in content based generation
of thumbnails [25] where the portion (and shape) of the image chosen
to be part of the thumbnail is driven by saliency. That can be ideal in
scenarios where important parts of image tend to lie in the middle of
the image rather than in its peripheral parts, and even less in corners.

With largest values, thumbnails form an irregular tiling fully cover-
ing the designed area (even then, tiles tend to have an aspect ratio that
still reflects the one of the original image - see Sec. 4.3). The problem
of losing a clear separation between thumbnails can be fixed: tiny lines
can be added to separate them, or thumbnail areas can be “shaded”
near region borders cropping them with a custom color like black or
white (see Fig. 8, bottom two images). This separation shading can be
enlarged and made stronger until thumbnails become elliptical shaped,
which can be a good compromise as they look well separated, while
still achieving good packing (see Fig. 8, bottom).

It should be noted that, due to irregularities of the relaxing Voronoi
diagrams, even small values of S are not guaranteed to prevent that
thumbnails occasionally touch or collide (when this happens, the con-
sequence is just that small corners are cut). Similarly, larger values
of S do not guarantee that no gaps arise between thumbnails (if re-
quired, these small gaps can be easily filled extending the thumbnails
by replicating its border colors).

5.2 Basic Pointer Based Interactions
As mentioned, clicking on a thumbnail causes it to become the new fo-
cus (thus triggering the implied thumbnails activation status, position
rearrangements, size changes, etc); dragging a thumbnail around with
the pointer device triggers two concurrent effects (see attached video).

First, during the drag action, the Voronoi site corresponding to the
dragged thumbnail is simply constrained to the current pointer po-
sition. This causes appropriate repositioning of neighboring regions
(due to the ongoing Lloyd relaxation) which can well persist after the
action. This mechanism allows the user to quickly rearrange (non per-
manently) the local disposition of thumbnails, by means of smaller
drag actions. For example this is a mean to move two similar thumb-
nails closer so to compare them.

Second, whenever the drag action extent is larger than a thresh-
old, the focus image changes accordingly. When the dragging action
begins, we record current focus index iF and the current horizontal
position xi of all active images i (assuming an horizontal thumbnail
bar). When the horizontal position of the dragged thumbnail j is closer
to xh than to any other site, the new focus switches to (iF − h + j).
This mechanism allows a user to scroll the thumbnail bar by means
of slightly wider drag actions, to select the current focus simply by
dragging a thumbnail into the current focus position, and so on.

6 IMPLEMENTATION DETAILS

6.1 Computing Lloyd relaxation and Voronoi diagrams
In order for this technique to be usable, Voronoi diagrams and Lloyd
relaxation must execute in real time (depending on the context, they
must leave enough computational power to the rest of the application).



Fig. 6. The effect of three different choices of parameters K0 and K1 determinining the behavior of regions at the boundary of the thumbnail area
(a detail is shown). Left: with K0 = 0 regions are strictly confined inside the thumbnail area boundary; middle: K0 = 0.25,K1 = 0.5, regions adjacent
to boundary are allowed to “bulge out” a bit; right: K0 = 0.5,K1 = 1 the effect is more evident (in the three cases, arrangement of interior regions is
also slightly different, because, as border regions invade some of the area outside the thumbnail area, they free space inside it).

After [12], Voronoi diagrams are computed leveraging the GPU:
each region is rendered as a 3D paraboloid (a rotation of a convex
parabola around its axis), with apex corresponding to sites and axis
parallel to the depth direction, truncated at a maximal depth. The stan-
dard depth-test mechanism results in the correct region assignment of
each screen pixel. Pixels are assigned a color ID identifying the region.

Additive weightings (see Sec. 4.1) are obtained by lifting the
paraboloid up or down along the depth direction. Region anisotropy
(see Sec. 4.3) is achieved by reshaping the paraboloid base as ellipses
elongated in the prescribed direction. Thumbnail-area borders, either
soft or strict (see Sec. 4.7), are obtained by pre-computing once the
values of K0−d/K1 for each pixel external to the thumbnail-area and
reinitializing the depth buffer to these values at each iteration (depth
buffer values inside the thumbnail-area are initialized to max depth).

Lloyd relaxation is computed from Voronoi diagrams which are cre-
ated with off-screen renderings. We compute five relaxation steps
before each final rendering shown on screen, when RGB textures
representing thumbnail images are accessed (pre-filtered with MIP-
mapping) and blended with border color if necessary (see Sec. 5.1).

The off-screen renderings are performed on a FrameBuffer Ob-
ject which, for sake of speed, is a sub-sampled version of the final
screen area. We experimentally determined that a 4×4 sub-sampling
introduces acceptable approximation errors (remember that the off-
screen renderings are only used to compute Lloyd relaxation, while
the Voronoi diagram actually shown is rendered on full resolution).

As a speedup, paraboloids can be rasterized as a single quad which
covers its base. For each generated fragment depth is computed ac-
cording to the squared distance from its site and the region weight.
However, we found out that tessellating paraboloids with triangles and
quads emanating from the apex actually leads to a slight performance
improvement, probably due to the loss of the Hierarchical Z-Buffer
optimization implied by any depth-displacing fragment program.

Lloyd relaxation and weight adjustment procedures (Sec. 4 and
Sec. 4.1) respectively require to compute current barycenters and areas
of each region. In principle, the two tasks can be performed together
entirely on the GPU, avoiding read-back of large buffers from video
card memory. A Vertex Buffer Object stores a set of 2D vertexes, one
for each texel of the FBO. A second FBO texture is then used to count
and cumulate the vertexes positions according to the queried region ID
in the former FBO. Finally, the latter FBO is read back to CPU where
new site positions are computed. However, this approach requires to
perform rendering over a 32-bit precision floating point texture, which,
on the platforms we used, is not HW-supported and causes huge per-
formance downgrades. Therefore, Lloyd relaxation was implemented
in CPU, reading back the off-screen buffer.

Even so, a thumbnail area covering a 1000×300 pixels buffer per-
forms always above 20 frames per second (and thus at 100 relaxation
steps per second), resulting in fluid and fast thumbnail movements (on
a PC with a 2,6GHz dual core processor, 3GB of RAM and GeForce
130M graphic card). We predict that, avoiding the read-back as dis-
cussed above, the same or better results will be easily achieved by
leaving more computational resources untapped.

6.2 Out-of-core thumbnail storage
As described in Sec. 3, the proposed approach uses a representati-
veness-prioritized access pattern (the most representative images are
used more often). This is useful when managing huge datasets, like
those surpassing a million images: thumbnails cannot be all stored in
video memory at the same time, or even in main volatile memory. The
adopted access pattern fits well with any hierarchical out-of-core rep-
resentation of the image dataset and allows for rather straightforward
implementations of out-of-core mechanisms that prefetch images and
thumbnails over a cascading cache levels system.

7 RESULTS AND CONCLUSIONS

Examples of results obtained by the technique are visible in all images
throughout the paper (except for 5), which are all actual screen-shots
of the implementation. However, still images are clearly only partially
representative of the results. Animated examples can be seen on the
attached videos (which are captured on real time).

Note that Lloyd relaxation for getting centroidal Voronoi regions
is often used in literature for the good properties of the final config-
urations it eventually converges to. In our case, we are interested in
the process that leads to convergence as much as in the final configu-
rations. Incidentally, that procedure naturally exhibits a convergence
speed that corresponds to an appealing ease out animation curve [19]:
thumbnails start fast and slow down as they come to the end of their
motion, increasing the feeling of responsiveness and stability of the
browsing mechanism.

7.1 Customizability
The proposed mechanism can be embedded into GUIs in a variety of
contexts, thanks to its scalability and adaptivity (e.g. with non-uniform
aspect ratios). Also, it is highly customizable, in terms of:

• the shape of the thumbnail area, which is arbitrary as long as it
is parameterized (also defining a spatial ordering – see Sec. 4.4);

• the choice of function g determining which and how many
images have to be active (see Sec. 3.1);

• the relative size of the thumbnails and how it should vary with
the distance from the current focus (see Sec. 3.2);

• whether thumbnails are allowed to “bulge out” a little from the
thumbnail area, and if so by how much (see Sec. 4.7);

• the mechanism to fill regions with thumbnails, balancing crop-
ping and downsizing (see Sec. 5.1).

Clearly, the right setting for these parameters strongly depends on the
context. Items in the above list represent as many tools in the hand
of an interface designer. If needed, they can also be exposed to the
end user (e.g. in “settings” panels), as they all allow for real-time tun-
ing: changing them triggers smooth animated transitions between the
resulting configurations.

Even though we are not presenting a specific interface for browsing
large image datasets, we have tested our mechanism customizability
by implementing them in a test environment, in which different prac-
tical cases can be reproduced.



Fig. 7. Examples of results (on the same dataset) featuring various shapes of thumbnail areas and other choices of parameters listed in Sec. 7.1.

7.2 Usability

Here we briefly summarize the results of a preliminary, informal us-
ability study that was conduced on the tool (for space and time reasons,
a full scale usability study can only be demanded to future work). A
group of 5 graduate students, not familiar of this tool nor CG experts,
was asked to browse a medium-large dataset of images (a folder with
728 images featuring a virtual tour of a medieval city, see Fig. 7 and
Fig. 8), using alternatively the proposed tool and the publicly avail-
able image browser “Picasa 3” by Google.At each run, the testee was
asked to seek four particular images, after being given a written textual
description of their expected content and those of their neighboring
images. We recorded the time used to perform the task.

Picasa provides two alternative interfaces. In the first one, most of
the screen is covered by the current focus image, displayed in full res-
olution; the thumbnail bar is fixed and very tiny (around 2 K-pixels)
showing 6 extra-thumbnails around the current focus, arranged on a
line. In the second interface, a regular grid of equally sized thumb-
nails covers most of the screen and no image is shown at full resolu-
tion. Even if the first modality represents the targeted scenario of our
method, a test against it would have been unfair due to the disparity
of screen space devoted to the bar. Instead, we tested against the sec-
ond modality, conceding 0.6 Megapixels (the minimal size) to Picasa
thumbnail bar against only 0.3 Megapixels of ours. Notwithstanding
that, timings with the proposed tool were, on average, only 0.67 times
the timings taken those of Picasa. Testees reported finding the pro-
posed tool intuitive. Most appreciated its customizability and reported
finding it pleasing to navigate with (but see Sec. 7.4).

These results cannot be regarded as conclusive evidence, but they
seem to indicate that the proposed tool is an advancement over stan-
dard grid based browsers, at least in these setups.

7.3 Conclusions

We presented a novel dynamic image browsing mechanism based on
Voronoi diagrams and Lloyd relaxation, adapted for our purposes in a

number of different ways.
The system delivers good thumbnail packings (ensuring good

screen-space usage) inside a designated area of freely customizable
shape. The visualization system scales well with the dataset size: a
subset of the dataset currently under direct inspection is displayed in its
entirety, while a more succinct representation of the rest of the dataset
is offered by showing a progressively sparser subsequence of the im-
ages: only the most representative thumbnails are displayed for those
images far from the current focus. This is the only approach we are
aware of where thumbnails size smoothly varies with the distance from
the currently selected image. The system works well with datasets pre-
senting non-uniform aspect ratios, or with images individually rotated,
including non-multiples of 90 degrees. During the browsing process,
thumbnails are dynamically rearranged, and the above characteristics
are preserved during and after the resulting animation.

7.4 Limitations
The proposed system also presents drawbacks. The system is tailored
on the single image selection browsing paradigm. This is not necessar-
ily an intrinsic limit, but strategies to accommodate multiple selection
of images are still to be investigated. Also, the approach does not pro-
vide a good spot for textual labels. While long labels can be substituted
by pop-out widgets, there can be applications that require to present
them constantly. Another problem relates to visual memory, as mov-
ing back to a previously selected focus usually does not result in the
same configuration. Lastly, as it often happens, subjective judgement
on overall pleasingness is not unanimous, with the occasional user re-
porting to find the produced dynamic arrangements “untidy looking”.
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Fig. 8. Four examples of different sets of parameters used to fill the regions with thumbnails. The same Voronoi diagram is used in all examples,
but different alternative strategies are used to fill its regions. From top to bottom: one: using a small value for parameter S, images are shrunk more
but are well separated. Two: with larger values of S, gaps between thumbnails are reduced, and each thumbnail gets cropped at angles. Three:
with larger values yet, thumbnails are cropped more, and end up fully partitioning the plane. Details inside them gets bigger and more visible, but it
becomes difficult to pull them away. Four: a white smooth border is added inside cells to visually separate them. Five: the white border is enlarged
inside each region, resulting in ellipsoidal shaped regions.
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